Euler demostró que en cualquier triángulo, el ortocentro, el circuncentro y el baricentro son colineales. Esta propiedad es también cierta para el centro de los nueve puntos notables; que Euler no había demostrado para ese tiempo. En los triángulos equiláteros, estos cuatro puntos coinciden, pero en cualquier otro triángulo no lo hacen, y la recta de Euler está determinado por dos cualesquiera de ellos. El centro del círculo de los nueve notables puntos se encuentra a mitad de camino a lo largo de la línea de Euler entre el ortocentro y elcircuncentro , y la distancia desde el centroide de el circuncentro es un medio que desde el baricentro hasta el ortocentro.
Otros puntos destacados que se encuentran en la recta de Euler son el punto de Longchamps, el punto Schiffler, el punto de Exeter y el punto far-out. Sin embargo, el incentro se encuentra en la recta de Euler sólo para triángulos isósceles.
Demostración
En un triángulo ABC, se determinan D como el punto medio del lado BC y E como el punto medio del lado CA. Entonces AD y BE son medianas que se intersecan en elbaricentro G. Trazando las perpendiculares por D y E se localiza el circuncentro O.
A continuación se prolonga la recta OG (en dirección a G) hasta un punto P, de modo que PG tenga el doble de longitud de GO (figura 1).
Al ser G baricentro, divide a las medianas en razón 2:1; es decir: AG=2GD. De este modo
.
Por otro lado, los ángulos AGP y DGO son opuestos por el vértice y por tanto iguales. Estas dos observaciones permiten concluir que los triángulos AGP y DGO son semejantes.
Pero de la semejanza se concluye que los ángulos PAG y ODG son iguales, y de este modo AP es paralela a OD. Finalmente, dado que OD es perpendicular a BC, entonces APtambién lo será; es decir, AP es la altura del triángulo.
Un argumento similar prueba que los triángulos BPG y EOG son semejantes y por tanto BP también es la altura. Esto demuestra que P es el punto de intersección de las alturas y por tanto P=H; es decir, P es el ortocentro.
No hay comentarios:
Publicar un comentario